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DISSIPATIVITY AND PERFORMANCE ANALYSIS OF 
SMART DAMPERS VIA LMI SYNTHESIS

Erik A. Johnson1, Associate Member, ASCE and Baris Erkus2, Student Member, ASCE

ABSTRACT

This paper investigates the dissipativity and performance of semiactive systems with smart dampers

via linear matrix inequality (LMI) synthesis. For this purpose, a dissipativity index is proposed to modify a

standard linear quadratic regulator (LQR) using the techniques available in LMI-based multiobjective con-

vex programming for better semiactive performance. First, a review of available dissipativity indices is

given, and two new dissipativity indices based on the concept of energy dissipation rate are defined. Sec-

ond, an LQR problem is defined in terms of a linear objective function and several LMI constraints. Then,

for each dissipativity index, a dissipativity inequality constraint is defined. It is observed that only one of

the dissipativity constraints can be represented in terms of LMIs and implemented in the LQR problem. A

modified LMI-based LQR controller is obtained by attaching the dissipativity constraint in its weak form.

The dissipativity indices and the proposed controller are employed for two numerical examples to investi-

gate the dissipativity and performance of semiactive systems. The first example is a 2DOF building with

an ideal damper attached in the first story, and an LQR controller is selected such that it has high dissipa-

tivity levels. The second example is a 2DOF model of a highway bridge where a realistic magnetorheolog-

ical (MR) fluid damper is attached at the bearing location resulting in an LQR controller with low

dissipativity levels. Comprehensive parametric studies are carried out for both examples using the modi-

fied LQR with various dissipativity constraint values and the standard LQR. For the first example, it is

found that the indices are very useful to identify the dissipative nature and semiactive performance rela-

tions. Also, the proposed method is able to improve the dissipative nature of the controller improving the

semiactive performance. On the other hand, for the second example, although the proposed method is able

to improve the dissipativity, the overall semiactive performance does not show a major improvement due

to drastically lowered dissipativity levels caused by the realistic damper model.

Keywords: dissipativity, smart dampers, semiactive control, linear quadratic regulator, linear matrix ine-

qualities. 
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INTRODUCTION

Smart dampers constitute an important class of semiactive devices used for structural control and

vibration mitigation in civil engineering (Housner et al. 1997; Spencer and Sain 1997; Symans and Con-

stantinou 1999; Soong and Spencer 2002). These devices are controllable dampers and, thus, have the fun-

damental physical property of a simple mechanical damper (e.g., a simple dashpot element): they dissipate

energy from the system to which they are attached. While this property makes smart dampers very attrac-

tive from the point of view of robustness, it limits their performance compared to active devices that can

also inject energy into the controlled system. This limitation stands as an important problem in the design

of semiactive control systems since there are no well-established analytical control strategies that accom-

modate the type of nonlinearity caused by the dissipative nature of a smart damper.

An often-employed semiactive control strategy for smart-dampers is clipped optimal control (Dyke et

al. 1996; Spencer et al. 2000; Erkus et al. 2002; Ramallo et al. 2002; Johnson et al. 2004). Clipped optimal

control assumes that the structure is linear and the control device is fully active. It then employs linear

active control theory to design a primary controller, and a clipping algorithm is used as a secondary con-

troller to make the damper mimic an active device and produce a force close to that commanded by the pri-

mary controller (Fig. 1). The primary controller is generally a linear quadratic (LQ) optimal controller

since this class of control theory is well-known and widely applied in structural control. In the past decade,

it has been shown by several researchers that a clipped optimal control strategy with a smart damper, such

as a magnetorheological (MR) fluid damper, is quite effective and demonstrates results competitive to a

corresponding active control strategy.

The effectiveness of a smart damper

commanded by the clipped optimal control

strategy can be explained by the primary con-

trol force being highly dissipative and, thus,

suitable for the damper to mimic. In a narrow

sense, the dissipative nature of a smart

damper can be characterized by a simple non-

linear inequality given by , where

 is the damper force and  is the velocity across the damper (see the Appendix for a note on the other

definitions on dissipativity). Similarly, a dissipative primary control force can be defined as ,
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where  is the primary control force. This inequality simply states that the energy dissipation rate of the

primary control force is negative. Therefore, if a fully active device is commanded by a control force

 during a time period  (  being the velocity of the point where the device is exerting force),

the device will dissipate energy from the structure during . In general, one cannot enforce the condition

 on the primary controller of an LQ based clipped optimal control strategy, and the dissipative

nature of the controller is arbitrary. For example, the dissipativity condition is mostly satisfied for multi-

story buildings where the controller is placed in the first floor or in between the base and the ground (Dyke

et al. 1996, 1998). There are other systems and control designs where the controller must add energy to the

structural system to achieve a specific set of design objectives, and the primary controller may command

mostly nondissipative forces; e.g., highway bridges and low-mass secondary systems (Inoudi 2000, Erkus

et al. 2002). Both types of examples show that the dissipative nature of the primary controller is an impor-

tant characteristics that should be investigated to understand and predict the performance of a semiactive

system with a smart damper commanded by a clipped optimal control algorithm. Insight into the concept

of dissipativity may also help to develop methods to modify the primary controller so that designers can

alter the dissipativity of the controller to get uppermost performance from a smart damper.

In the literature, there is very little work that investigates the dissipative characteristics of the primary

controller in a clipped optimal control strategy. This is particularly due to the absence of well defined indi-

ces that can measure the dissipativity of the primary control force. Inaudi (2000) proposed a stochastic

index that estimates the probability of the primary control force being dissipative, i.e., . Later,

Christenson (2003) justified the correlation between  and the performance of the semiactive

systems by implementing several numerical examples. Simple deterministic indices based on the dynamic

time-history analyses are also used to observe the effect of the dissipative nature of the control force and

the ability of damper to mimic the control force (e.g., Erkus et al. 2002).

From a practical point of view, a stochastic index gives a broader sense of the dissipativity of a control-

ler in the design stage without time-consuming simulations, whereas a deterministic index is useful to

investigate a specific controller for a specific excitation. A stochastic index, however, has a more crucial

advantage over a deterministic index: it can be used in conjunction with special methods, such as convex

multiobjective techniques, to obtain controllers with various dissipativity levels. These methods are quite

popular in the control field, since they allow numerical solution of multiobjective optimal control problems

that do not have analytical solution. In fact, numerical solution of these problems are straightforward if

ua

uava 0< Δt va

Δt

uavd 0<

P uav 0<[ ]

P uav 0<[ ]
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they can be represented as eigenvalue problems in terms of special matrix functions known as linear matrix

inequalities (LMIs). On the other hand, for problems that cannot be represented in terms of LMIs, a solu-

tion is not always guaranteed, and more sophisticated methods should be employed. Whether they yield

numerically solvable problems or not, convex multiobjective techniques are quite helpful for giving insight

into very complex problems that cannot be investigated analytically, and can also be used to investigate

dissipativity employing stochastic dissipativity indices.

This paper investigates the dissipativity and performance of semiactive systems by proposing two dis-

sipativity indices for the primary controller of a clipped optimal control strategy and utilizing a modified

LQR controller to achieve controllers with various dissipativity characteristics. First, available dissipativ-

ity indices are reviewed, and proposed dissipativity indices are defined. Then, an LQ problem is repre-

sented as an optimization problem with convex LMIs, which is in the form of an eigenvalue problem

(EVP). It is observed that one of the proposed dissipativity indices can be represented in weak form as an

LMI constraint and can be appended to the LQ problem. The modified LQR controller is implemented on

two structures to observe the index–performance relations for several dissipativity levels and controller

parameters: (1) a two-degree-of-freedom shear structure (2DOF) with an ideal semiactive damper attached

between the first and second stories, and (2) a simplified 2DOF highway bridge model similar to the one

given by Erkus et al. (2002) with an MR fluid damper (Yang et al., 2002) in the isolation layer below the

deck. The results are presented in tabular and graphical forms. Herein, the controller is a state-feedback

LQR controller, yet an estimator, such as a Kalman filter, can easily be utilized to estimate the states using

the measurements. The MATLAB® LMI Control Toolbox (Gahinet et al. 1995) is used as the LMI solver.

DISSIPATIVITY INDICES

In this section, a review of the available dissipativity indices are given, and proposed dissipativity indi-

ces are defined. For this purpose, first, a formal definition of a dissipative force is given.

Strictly Dissipative Force

Consider a continuous external force , which is applied to a system on a surface region .

Let  be the velocity of the surface (with positive velocity in the same direction as positive forces).

The rate of energy added to the system by the force  is given by

f x t,( ) x Ω∈

v x t,( )

f x t,( )
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 . (1)

 is called a strictly dissipative force if the rate of energy added is negative for all . Or, without

loss of generality,

(2)

where  is a strictly negative real function.

When the external force is a point load applied at point  on the system, (2) simplifies to

, (3)

where  is the velocity of point , and the location parameter  is dropped for simplicity. Definition

given by (3) is more suitable for a control problem since the control force is generally modelled as a point

load. This condition simply states that the directions of the force and the velocity are always opposite. In

fact, this is the case for a damper. Therefore, a damper force is a strictly dissipative force, and the rate it

injects into the system is always negative (i.e., it is always dissipating energy). In this paper, the term dissi-

pative force is used instead of strictly dissipative force for convenience.

Percentage of Dissipative Control Forces

The following deterministic index computes the percentage of the time that the primary control force

commands dissipative forces:

(4)

where  is the Heaviside unit step function. Since this index is deterministic, a discrete time representa-

tion is useful. For a time step ,  can be written as

(5)

where  and  are the control force and the damper force at the time . The higher D-value

shows that the control force produces more dissipative forces.

t∂
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∫=

f x t,( ) t 0≥
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Probability that the Control Force is Dissipative

For a linear system with stationary Gaussian responses, the probability that the control force is strictly

dissipative is given by (Inaudi 2000)

(6)

where  is the correlation coefficient between  and . For a linear system and a linear controller,

 is the off-diagonal term of the symmetric covariance matrix of the output .

Expected Value of the Energy Flow Rate

As discussed previously, since the dissipative force condition given by (3) is not stochastic, it cannot

be directly used to examine a stochastic controller. Therefore, the expected value of this condition is

applied to the primary control force as follows:

. (7)

Note that  does not necessarily mean that the control force is strictly dissipative or mostly

strictly dissipative. However, it is clear that for values of ,  has a higher mean energy

flow rate, which can be used as an indication of the dissipative nature of the control force. Therefore the

following index is proposed:

. (8)

 is called the mean energy flow rate in this paper.

One problem with  is that it is not unitless; i.e., a large magnitude of  may be an indication of

very large values of force . To avoid this problem, a normalized index is also proposed as follows:

. (9)

 is called the normalized mean energy flow rate in this paper. Clearly, a negative value of  indi-

cates the likelihood of the control force being strictly dissipative.

Dp P uavd[ ]
ρuavd
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The Relation Between Dp and Dne for an LQ Problem

In a standard LQ problem, all stochastic variables are

zero-mean. Therefore,  is, in fact, the correlation coeffi-

cient between the force  and the velocity , i.e.,

. Therefore,  holds. Moreover, if

 holds, the controller is more likely to produce

strictly negative control forces since the denominator of 

is always positive. Also note that for , the proba-

bility index becomes  as shown in Fig. 2. On the

other hand, if , the controller force is more likely

to add energy to the system and .

LMI-EVP REPRESENTATION OF AN LQR PROBLEM

In this section, first, a brief mathematical background is given for LMI analysis. Second, a method for

the LMI characterization of a multiobjective optimization problem is summarized. Then, a definition of a

standard linear quadratic regulator (LQR) problem is given, and it’s LMI characterization is obtained using

the method summarized.

Mathematical Background

Linear Matrix Inequalities

The matrix inequality

(10)

is called a linear matrix inequality, where  is an affine function (see the Appendix) of the real vector

 and , , …,  are real symmetric matrices.

• The inequality  implies that  is a positive definite matrix, i.e., the real parts of all eigen-

values of  are positive.

• A vector  that satisfies the inequality (10) is known as a feasible solution of the LMI. The feasible

solution set of the inequality (10), , is a convex set (see the Appendix). Convexity is an
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important property since there are powerful numerical techniques for the solution of problems with

convex solution sets (Boyd et al. 1994; Nesterov and Nemirovskii 1994).

• Some inequalities not in the form of (10) can be converted to LMIs by some algebraic operations.

Also, multiple LMIs can be represented with a single equivalent LMI by defining a new variable that

includes the variables of the multiple LMIs. Further, the solution set of some nonconvex matrix ine-

qualities can be mapped into a convex solution set of a corresponding LMI. Therefore, a problem that

cannot be solved analytically or numerically, due to several types of inequalities, can be solved numer-

ically if these inequalities can be converted into LMIs.

• Often encountered in control problems are inequalities with matrix variables instead of a vector as

given in inequality (10). As an example, consider the Lyapunov inequality  where  is

a given (known) matrix and the symmetric real matrix  is the variable. This inequality can easily be

reduced into the form given by inequality (10) (Boyd et al. 1994). In this paper, these type of LMIs

will not be explicitly reduced to vector form of (10); rather, they will be used as they are.

Bilinear Matrix Inequalities

The inequality

(11)

is called a bilinear matrix inequality and the matrix valued function  is called bilinear if  is

affine with respect to each of its arguments; i.e.,  is affine in  when  is fixed and vice versa.

• BMIs are, in general, nonconvex and have an intractable computational complexity known as NP-

hardness (Toker and Özbay 1995). Therefore, there are no efficient algorithms for the numerical solu-

tion of problems involving BMIs. However, by defining new variables, some BMIs can be converted

to equivalent LMIs; i.e, a new LMI is defined whose solution set can be mapped into the solution set of

the BMI. This property is important since BMIs are frequently encountered in control problems.

Stability and Lyapunov’s Equality

There are various interpretations of stability in the general field of civil engineering. In this paper, sta-

bility refers to bounded-input-bounded-output (BIBO) stability (see, e.g., Chen 1999 for a definition and

treatment of BIBO stability). A linear time-invariant system given by  is stable if every eigen-

value of  has a negative real part (Chen 1999); a matrix  satisfying this condition is called Hurwitz. A

convenient way to check the eigenvalues of  is to employ a Lyapunov equation as follows: All eigenval-

AP PAT+ 0< A

P

F x y,( ) 0>

F x y,( ) F x y,( )

F x y,( ) x y

q· Aq=

A A

A
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ues of  have negative real parts if and only if, for any given matrix , there exists a unique

solution  for the Lyapunov equation given by  (or ). This

condition can also be stated as follows: The system  is stable (and  is Hurwitz) if the LMI

, or its strict version , has a feasible solution  (see, e.g.,

Slotine and Li (1991) for a treatment of Lyapunov stability theory). Herein,  is called the Lyapunov

matrix. 

There are other useful properties of the Lyapunov equality. For example, the solution of the Lyapunov

equation will simply give the controllability and observability grammians for a specific value of

 (see, e.g., Dullerud and Paganini (2000) for the definitions and derivations). Similarly, for a

given system , where  is a white noise external disturbance with unit intensity

, the solution of the Lyapunov equation for  is simply the expected

value of  (i.e., the covariance matrix of the states ). 

LMI Characterization of Multivariable Feedback Control Systems

In a very broad sense, multivariable feedback control deals with problems with more than one design

objective including time and frequency domain constraints (see, e.g., Scherer et al. (1997) for a list of

designs objectives encountered frequently in the field of control). In most cases, an analytical solution for a

controller that satisfies multiple constraints is not available. To obtain an LMI characterization for these

types of problems, a method is given by Scherer et al. (1997) and is very briefly summarized here:

• Consider a closed-loop system , where  is Hurwitz and is a function of the controller.

Let  be the Lyapunov matrix for this closed loop system satisfying the Lyapunov inequality. For each

of the objectives, a matrix inequality condition in terms of a Lyapunov matrix is found. Inequality con-

ditions are selected such that they are satisfied when the corresponding design specification is met. The

final inequalities become a function of , the controller and the Lyapunov matrix. Therefore, these

matrix inequalities are, in general, bilinear.

• Let the matrix inequality condition associated with the  objective be , where  is the

corresponding Lyapunov matrix and  is the controller. Then, to enforce a unique Lyapunov matrix

for the system, all the Lyapunov matrices are set to a single Lyapunov matrix as .

Therefore, a problem with several BMIs, whose Lyapunov matrices are all , is obtained.

• The final step is to introduce new variables or to employ some algebraic manipulations to convert

BMIs into LMIs. After obtaining an LMI for each constraint, all LMIs are cast into a single large LMI.

A Q QT 0>=

S ST 0>= AS SAT+ Q–= ATS SA+ Q–=

q· Aq= A

AS SAT Q+ + 0≤ AS SAT Q+ + 0< S ST 0>=

S

Q QT 0>=

q· Aq Ew+= w

E w t( )wT t τ+( )[ ] Iδ τ( )= Q EET=

qqT q

qc
· Acqc= Ac

S

Ac

ith Fi K S, i( ) 0> Si

K
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After these manipulations, the final problem will have a convex LMI constraint and can be solved

numerically. It should be noted that the mapping between the BMIs and LMIs must be one-to-one.

If the problem includes an optimization criteria, the LMI problem is generally in the form of an eigen-

value problem (Boyd et al. 1994). An eigenvalue problem has several representations. The one that will be

employed in this paper is as follows:

(12)

where  is a known vector and  is an LMI. Clearly, the object function  is a linear function of

, and the constraint  is a convex inequality. Another form of EVP has a matrix objective function

with terms in the form of  where  and  are matrices of appropriate dimensions, which, in fact,

can be represented by (12) with some algebraic manipulations (Boyd et al. 1994; Gahinet et al. 1995).

LQR Control Problem

State-feedback linear quadratic regulator (LQR) control is a frequently used theory in the field of struc-

tural control since the background concepts are easily understood, and a proper design can achieve an effi-

cient performance. In this paper, LQR is the baseline control strategy, and is defined as follows. Consider a

linear time-invariant system:

(13)

where  is the state vector,  is a vector of control forces,  is a stationary zero-mean white noise sto-

chastic vector process disturbance with unit intensity, and  is the vector of outputs to be minimized. In

structural control, the excitation is generally earthquake ground acceleration or wind excitation modelled

as filtered white noise, and the outputs are structural response quantities such as story drifts or absolute

accelerations that lead to a zero . The LQR problem is to find the control gain  that satisfies the opti-

mization

(14)

 cTx
x

min

subject to F x( ) 0>

c F x( ) 0> cTx

x F x( ) 0>

CTX C X

q· Aq Bu Ew+ +=
z Czq Dzu Fzw+ +=

q u w

z

Fz K

 E zTQ̃z uTR̃u zTÑu uTÑTz+ ++[ ]
K

min

subject to (13) and u Kq–=
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where ,  and  are weighting matrices, and  is a constant feedback gain matrix.

Substituting the output equation in (13) into the optimization problem (14), one obtains another form of the

LQR problem

(15)

where

. (16)

For the problem defined by (15) and (16) to be well-posed, design parameters should satisfy the following

inequalities (see the Appendix for a note on this condition):

 and . (17)

LMI-EVP Representation of an LQR Problem

A derivation of the LMI-EVP representation of an LQR problem is given utilizing the method given by

Scherer et al. (1997). Note that other methods to obtain the same representation are available in the control

theory literature (see the Appendix). First, the LQR problem is redefined in a form suitable for LMI char-

acterization as follows: consider the LQR problem given by (15) and (16). Let  and  be real sym-

metric matrices that satisfy  and . Using , optimization (15) can

be written as

. (18)

Let , which is the state covariance matrix; clearly, . Utilizing the trace operator

 and a Lyapunov equation, whose solution gives the state covariance matrix, to represent the stabil-

ity of the system, optimization (18) can be written as 

. (19)

Q̃ Q̃T= 0≥ R̃ R̃T= 0> Ñ K

 E qTQq uTRu qTNu uTNTq+ ++[ ]
K

min

subject to  q· Aq Bu Ew+ +=   u Kq–=,

Q Cz
TQ̃Cz     ,= N Cz

TQ̃Dz Cz
TÑ+=     R R̃ Dz

TQ̃Dz Dz
TÑ ÑTDz+ + +=,

W Q N
NT R

0≥= R 0>

Q1 2/ R1 2/

Q1 2/ Q1 2/ Q= R1 2/ R1 2/ R= u Kq–=

 E qTQ1 2⁄ Q1 2⁄ q qTKTR1 2⁄ R1 2⁄ Kq qTNKq– qTKTNTq–+[ ]
K

min

subject to  q· A BK–( )q Ew+=

E qqT[ ] P= P PT 0>=

Tr .( )

 Tr Q1 2⁄ PQ1 2⁄( ) Tr R1 2⁄ KPKTR1 2⁄( ) Tr KPN( )– Tr NTPKT( )–+
K P,
min

subject to  A BK–( )P P A BK–( )T EET+ + 0= ,        P PT= 0>
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Having redefined the LQR problem in a form suitable for LMI characterization, the LMI-EVP repre-

sentation can be found using the first step of the aforementioned method (Scherer et al. 1997). For this pur-

pose, the following optimization problem for the closed loop system  and 

is defined:

(20)

where  is the Lyapunov matrix. It is proposed that the solution of (19) is indeed equivalent to the solution

of (20); i.e., if  and  are the solutions to (19), and  and  are the solutions to (20), then

 and . Proof of this proposition is given in the Appendix. One should also note that

although  does not represent the state covariance matrix, the solution of (20), , is equal to the state

covariance matrix.

The optimization problem (20) is not exactly in the form of the EVP (12) since it includes the multipli-

cative terms  (i.e., the objective function is not linear), and the first inequality constraint is a BMI (i.e,

the constraint is not convex). To convert the BMI constraint into an LMI constraint, a new variable

 is introduced, and (20) becomes

. (21)

The nonlinear term in the objective function can be represented as the solution to an optimization

(22)

where  is an auxiliary parameter. The inequality in (22) can be rewritten using the Schur complement

formula (see Appendix)

. (23)

Therefore the problem (21) can be written as 

q· Aq Bu Ew+ += u Fq–=

 Tr Q1 2⁄ SQ1 2⁄( ) Tr R1 2⁄ FSFTR1 2⁄( ) Tr FSN( )– Tr NTSFT( )–+
F S,
min

subject to  A BF–( )S S A BF–( )T EET+ + 0< ,       S ST= 0>

S

K0 P0 F0 S0

K0 F0= P0 S0=

S S0

FS

Y FS=

 Tr Q1 2⁄ SQ1 2⁄( ) Tr R1 2⁄ YS 1– YTR1 2⁄( ) Tr YN( )– Tr NTYT( )–+
Y S,
min

subject to  AS BY– SAT YTBT– EET+ + 0< ,       S ST= 0>
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 . (24)

Problem (24) is equivalent to the standard LQR problem defined by (14), and the feedback gain is then

given by .

DISSIPATIVITY CONSTRAINTS

In this section, the dissipativity indices are investigated as candidates for a new inequality constraint to

be appended to the EVP-LQR problem to induce higher levels of dissipativity.

Among the indices given,  cannot be represented in a manner suitable for the LQR problem since it

is deterministic. To find a constraint for ,  is represented in a form suitable for the EVP first. Let

the velocity of the system at the point where the damper exerts force be given by . Since the LQR

control force is a feedback force as ,  can be written as

. (25)

Introducing the state covariance matrix , a constraint for  is obtained as

     where    . (26)

Using the same notation, a constraint for  is found as

    where   . (27)

Similarly, a constraint for  is given by

    where   . (28)

Clearly, the conditions given by

(29)

 Tr Q1 2⁄ SQ1 2⁄( ) Tr X( ) Tr YN( )– Tr NTYT( )–+
Y S X, ,
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are more desired as the primary control force is more likely to dissipate energy for these values.

One should note that the normalized mean energy flow constraint given by (28) enforces the probabil-

ity constraint (26) through a mapping, which can be visualized with the aid of Fig. 2. Since  constraint

(28) does not include a trigonometric function, it is more suitable for the EVP problem, and  constraint

(26) is not considered further.

It is now required to find representations of the constraints given by (27) or (28) suitable for the EVP,

i.e., they should be representable in terms of Lyapunov matrices,  and . However, the introduction of

 and  requires the addition of equality constraints given by

   and   . (30)

Moreover, since (28) is a nonlinear matrix inequality constraint, and a corresponding BMI and/or a LMI

may not be available, a numerical solution of the EVP with the constraint (28) is not guaranteed by the

available solution techniques. Therefore, substantial research may be required for the development of new

techniques specific to (28) and (30) to obtain an at-least-local solution, which is out of the scope of this

research. Therefore, the following constraint is used:

    where   . (31)

There are several advantages and disadvantages of this constraint. First of all, (31) does not fully repre-

sent the indices  and  since the equality constraints (30) are dropped. Also, the term  is not

a normalized index. In contrast, this constraint simply allows a numerical solution to this sophisticated

multiobjective problem, which is actually the fundamentally philosophy behind the LMI-EVP approach.

The dissipativity constraint (31) can be added to the LQR problem for various values of . The new

controllers may have various dissipativity levels and can be used in a semiactive system to investigate the

correlation between the dissipativity indices and the performance.

NUMERICAL EXAMPLES

In this section, two numerical examples are investigated to understand how dissipativity characteristics

of a semiactive system are related to its performance. The first example is a simple two-degree-of-freedom

shear structure where an ideal smart damper is placed in the first story. The second example is a simple

highway bridge model with a rubber bearing and an MR damper between the superstructure and the sub-

Dne

Dp

Se Sne

Se Sne
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structure. For each example, the structural parameters are explained first. Then, the EVP problem (20) is

verified to be equivalent to the corresponding LQR problem using a simple control design. Finally, for

each example, a set of LQR controller parameters is defined, and the structural system is analyzed numeri-

cally for white noise excitations, with or without the dissipativity constraint (31). The performance and dis-

sipativity characteristics are presented graphically. The control systems investigated for the 2DOF building

and bridge models are summarized in Table 1 and as follows:

• Act: This is a theoretical fully

active system. A fictitious fully

active actuator is used instead

of a smart damper. Standard

LQR is used to command the

actuator.

• Act-Dis: This system is also a

theoretical fully active system. A fictitious fully active actuator is used instead of a smart damper. The

proposed LMI-EVP controller with the dissipativity constraint is utilized instead of the standard LQR

to observe how the added dissipativity constraint changes the dissipative nature of the active control

force.

• SAct: This is a semiactive system where a smart damper is used. A clipped optimal control strategy is

utilized to command the smart damper. The primary controller in the clipped optimal control is a stan-

dard LQR controller.

• SAct-Dis: This is also a semiactive system where a smart

damper is used. A clipped optimal control strategy is utilized

to command the smart damper. The primary controller in the

clipped optimal control is the proposed LMI-EVP controller

with the dissipativity constraint. 

Numerical Example: A 2DOF Building Structure 

The 2DOF shear building model shown in Fig. 3 is considered

as the first numerical example. The equation of motion and the

state-space representation of the equation of motion are straight-

forward and will not be given here. The floor masses  and 

TABLE 1 A summary of the systems analyzed 
in the numerical examples.

Systems Control
Device

Control
Strategy

Primary
Controller

Act Fully Active LQR — Not Incl.
Act-Dis Fully Active LMI-EVP — Included

SAct Smart Damper Clipped Opt. LQR Not Incl.
SAct-Dis Smart Damper Clipped Opt. LMI-EVP Included

FSCv
T– γe

L<

damper

m1

m2

xg

..

k1, c1

k2, c2

FIG. 3 The two-DOF system.m1 m2
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are 100 tons. The stiffnesses  and  are selected such that the story periods are 0.5 secs. Similarly, the

floor damping coefficients are found by setting the modal damping ratios to 2%. An ideal smart damper is

attached between the first floor and the ground. 

An ideal damper can be considered as an active actuator that can only apply dissipative forces, i.e.,

forces that are strictly dissipative. Therefore, in the clipped optimal control strategy, an ideal damper can

successfully mimic the primary controller when the primary controller force is strictly dissipative; other-

wise, it produces no force. This behavior can be characterized as follows:

(32)

where  and  are the damper force and velocity, respectively, and  is the primary control force.

The equivalency of the LQR problem and the LMI-EVP are verified for a set of design parameters

given by 

                      . (33)

which satisfies the positive definite inequality (17). Note that the dissipativity constraint is not employed

here. It is found that the gains and covariance matrices obtained from LQR and LMI approaches are identi-

cal within numerical round-off accuracy. Also, other weighting matrix sets that satisfy the positive definite

inequality (17) are observed to give identical gains and covariances, whereas those not satisfying (17) give

different results as the LQR optimization problem is then improper. It is also observed that both

approaches give different results for some control designs, even though inequality (17) is satisfied; for

these designs, it is found that the smallest eigenvalue of  in (17) is very close to zero, e.g. ,

which causes numerical problems in the solution methods.

Having verified the LMI-LQR equivalency, a new control design is introduced to be used in the dissi-

pativity analysis. The output vector to be minimized is selected as the drifts of each story and the absolute

accelerations of each floor, . The control design parameters are selected as

                      . (34)
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This set of parameters allows one to choose the relative importance of the drift and absolute acceleration

responses. The normalization frequency  is taken as a ; this value is found such that the drift

and absolute acceleration portions of the term  give the same values for ( , ) in

active control.

As a first attempt, a MATLAB code is written where the dissipativity constraint (31) with several val-

ues of  is simply appended to the LMI-EVP to obtain the smallest possible value of  for a given set of

control design parameters. During this initial study, it is found that one of the parameters of the MATLAB

LMI solver, known as feasibility radius , affects the results considerably.  creates a limit for the

Euclidian magnitude of the EVP parameter  (see inequality (9) above) for numerical efficiency. It is

observed that for a given , different values of the feasibility radius yield different dissipativity levels.

This is a natural consequence of the dissipativity constraint (31), which includes a term that is not normal-

ized. Therefore, a parametric study is carried out to find the  pair that yields the smallest  for

each control design. The resulting  values are then employed in the dynamic analysis of the 2DOF

structure excited by an artificial white noise signal for the corresponding control designs. The performance

of the structure is investigated using three indices given by

(35)

(36)

. (37)

where, for a discrete time history ,  is defined by

. (38)

The following results are obtained for  and several values of  ranging from  to . 

Fig. 4 shows the dissipativity characteristics of the controllers for the 2DOF building structure, where

the terms  and  are obtained using stochastic analysis for a white noise excitation with an intensity

 (see the explanation for Fig. 5). Fig. 5 shows  and  plots where the structure is excited with a

100 sec white noise signal. It is observed that the peak acceleration of the generated white noise signal is

ωn 10.5rad/sec
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around m/s2. Therefore, the white noise is normalized by a factor of  to have an excitation that is

consistent with the well known historical earthquake ground acceleration data. Note that the results of the

covariance analyses, which is given by Fig. 4 is also normalized accordingly. Fig. 6 shows the displace-

ment and acceleration indices for the semiactive systems. In all of the above plots, the performance indices

are normalized with the corresponding uncontrolled system indices. Note that the control force term in the

index  is not used for the uncontrolled structure. The following observations are made:

• For practical control force levels ( N in Fig. 5) the dissipativity of the controller is very high

for this particular structure and control design.

• It is observed that the variation of  is not similar to the variation of  for the active system (Act),

i.e., for small control force levels  is low while  is high. This difference can be attributed to the
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magnitudes of the RMS control force and RMS velocity used as normalization coefficients in the com-

putation of . Therefore, although a high value of  indicates highly dissipative control forces,

the corresponding control design may not be suitable for practical purposes due to low control force

levels.

• The LMI method improves  and  for a given . This is more clear for N.

However, the best improvement in  is for N. Moreover, it is observed that the LMI

method improves the drift performance about 25% for N. This improvement is not clear

on the overall performance index .
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• Another difference between  and  is that the highest value of  corresponds to RMS control

force levels of N, while this range is N for . Also observed is the sim-

ilarity between  and  (note that the  plot should be flipped vertically to visualize this simi-

larity).

• The LMI method narrows the range of possible  values for the control designs. This is a very use-

ful property in the design process. In general, one must do a comprehensive parametric study, which

may include computationaly expensive nonlinear analyses, to find the best  pair for a given .

The LMI method and the dissipativity indices may give a good sense of the achievable semiactive per-

formance letting the designer to avoid simulations that will not yield better results.

• The plot of overall performance index shows a high similarity to the  plot. Therefore, for this exam-

ple,  is more useful to guess the best control design.

The indices given in this paper are very helpful to understand the dissipative nature of the primary con-

trol force and the semiactive performance of this example. The LMI method is able to modify the dissipa-

tivity characteristics of the controller so that the semiactive performance is improved. Two critical designs

are located. The first design corresponds to N, and the LMI method improves the indices

 and  though it is not the best semiactive design. The second design point is for N,

which has the best semiactive performance and the highest improvement in . The results for these two

designs are summarized in Tables 2 and 3. Therefore, each index shows different characteristics of the con-

trol force and may be useful to understand different problems. 
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Numerical Example: 2DOF Highway Bridge Model

The bridge model shown in Fig. 7 is used as the second example. In this model, the mass ratio, damp-

ing ratio and natural period of the pier are ,  and 0.5 sec, respectively. The mass of the pier

is  ton. The bearing stiffness is N/m, which is computed using a formula for opti-

TABLE 2 Indices for design N

 (Nm/s)  (%)

Act –7.983×104 –0.966 0.917 - -

Act-Dis –8.043×104  –0.997a

a. Highest dissipativity achieved.

 0.974a - -

SAct - - 0.917 0.283 0.273

SAct-Dis - -  0.974a 0.258 0.269

uRMS 104.2≈

Dn Dne D% Jd Ja

TABLE 3 Indices for design N

 (Nm/s)  (%)

Act –9.073×104 –0.652 0.721 - -

Act-Dis   –9.229×104 a

a. Highest dissipativity achieved.

–0.763 0.765 - -

SAct - - 0.760 0.160 0.135

SAct-Dis - - 0.793  0.129b

b. Highest performance achieved.

0.134

uRMS 104.8≈

Dn Dne D% Jd Ja

FIG. 7 2DOF modelling of the highway bridge (Erkus et al. 2002)

m2 m1⁄ 5= 5%

m1 100= 7.685 106×
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mal stiffness (Erkus et al. 2002). For active control, the damping of the bearing is assumed to be zero and

for the uncontrolled structure it is taken as 196 kN.s/m. If the design goal is to reduce the pier response

where a damper is attached between the pier and the deck, a particular control design may yield low dissi-

pativity levels, and the damper cannot mimic the primary control force efficiently (Erkus et al. 2002). Note

that this dissipativity characteristic is also observed by Inaudi (2000) by an analytical study. The mathe-

matical model is already given by Erkus et al. (2002) and will not be repeated here. The damper in the

original paper (Erkus et al. 2002) is an MR fluid damper and a mathematical model of a prototype small-

scale MR fluid damper is used in the analysis. This study, however uses a more realistic damper model,

which is obtained for a 20-ton MR fluid damper. The details of this new model are given by Yang et al.

(2002). In the analysis, the damper force is amplified by a factor of 3 to be able to exert forces commanded

by the primary control force (in a practical application a 60-ton damper would be used). The equivalency

of the LMI-EVP and LQR problem is tested for this example using several control design parameters. It is

found that the two methods yield identical results when the dissipativity constraint is not employed and

condition (17) is satisfied.

In this example, N.m and the control design parameter  is selected such that the term

 represents an energy quantity i.e.,

(39)

where  determines the relative importance of the pier and the bearing responses. In this example,

 is selected, which results in LQR controllers with low dissipativity levels. Using this particular

controller design, the LMI-EVP problem is solved for several values of  to increase the controller dissi-

pativity. After some test simulations,  is used. The results are plotted for . 

Fig. 8 shows the dissipativity and performance characteristics of the LMI-EVP controller for various

values of , which is obtained by standard stochastic analysis. In these plots, the values are normalized

by the corresponding standard LQR controller values. Fig. 9 shows the dissipativity nature of the control-

lers and performance of the systems for both active and semiactive systems excited by the white noise sig-

nal used in the first example. In these plots, the RMS response values are normalized by the corresponding

RMS values of an uncontrolled structure given by Erkus et al. (2002), and the maximum control force val-

ues are normalized by the total weight of the structure. The followings are observed:
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• As seen in Fig. 8, the LMI method improves the dissipativity index  even though the weak form of

the dissipativity constraint is used. On the other hand, the index  indicates a reduction in the mean

energy flow rate. It is also observed that there is an improvement in the drift index for 

although this is not anticipated. In the design process, this point may be considered more suitable for a

semiactive design.

• The simulation results given in Fig. 9 show that improving dissipativity characteristics makes a very

minor improvement on the semiactive drift performance. There are several reasons for this result. First,

Act-Dis performance does not improve; indeed,  increases considerably. Second, the damper

is not an ideal damper and has a very nonlinear dynamics. It is not as efficient as an ideal damper in

applying the required force.

• A more interesting observation that effects the semiactive performance is that the dissipativity index

 of the active system reduces to  for the semiactive system. The main reason for

this reduction is inability of the MR damper to apply nondissipative forces. The active controller with

0.98

0.99

1

 D
e

2

4

6

 D
ne

0.2 0.3 0.4 0.5 0.6

1

1.5

2

 γ
c

( 
x 1) R

M
S

0.2 0.3 0.4 0.5 0.6

0.4

0.8

1.2

 γ
c

( 
v 1) R

M
S

FIG. 8 Normalized ,  and performance plots of the LMI-EVP controller of the 2DOF bridge struc-
ture for various  values (covariance analysis).

De Dne
γe

L

Dne

De

γc 0.15≈

x1( )RMS

D% 52%≈ D% 25%≈



Dissipativity and Performance of Smart Dampers, Johnson and Erkus, 3rd Draft, 3/13/06 accepted by Journal of Structural Control and Health Monitoring

24

 requires nondissipative forces, probably ones that inject energy into the structural system.

During the simulation, the damper will not be able to mimic the active control force since it cannot

exert nondissipative forces. Therefore, the response of the semiactive system will be considerably dif-

ferent from a corresponding fully active system response. In this case, the primary controller (standard
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LQR) will command forces that inject even more energy than in the active case to push back the semi-

active response path into the fully active response path. This will yield control forces with even lower

dissipativity than expected. Obviously, if an ideal damper model were used, this effect will not be as

significant as in the MR fluid damper case. Therefore, it can be concluded that the use of semiactive

devices to implement very nondissipative control designs may reduce the semiactive performance in

two ways: first, performance reduction due to low dissipativity; second, additional dissipativity reduc-

tion due to the inability of the damper to mimic a nondissipative control force.

• Although the LMI approach improves the dissipativity, it cannot compensate for the severe reduction

caused by the damper effect described above, and its benefits are not observed on the final semiactive

performance.

• The benefit of improved dissipativity is the lowered control force levels implemented by the damper.

About 20% reduction occurred on the maximum control force required for  to achieve

the same drift performance. It should be noted that there may be other control design parameter sets

that gives the same performance improvement, though a comprehensive and time consuming paramet-

ric study would be required to search for the existence of such sets. On the other hand, the proposed

LMI method allows one to achieve the same performance without an extensive and time consuming

study.

CONCLUSIONS

In this paper, the dissipativity and performance of semiactive systems with smart dampers are investi-

gated. In addition to a brief review of previously defined dissipativity indices, two new indices are defined.

For this purpose, a formal definition of a strictly dissipative force is introduced, and dissipativity indices

are defined for the primary control force in a clipped optimal control strategy. The statistical and physical

relations among these dissipativity indices are discussed. Then, a method based on LMI control design is

proposed to modify the dissipativity characteristics of the primary control force. The method converts an

LQR problem into a multiobjective EVP form where new inequality constraints can be imposed on the

controller. Based on the indices defined, possible inequality constraints are derived. It is found that, due to

the nature of the EVP, only a weak constraint can be used to modify the EVP. This constraint is then

employed for two numerical examples: a highly dissipative control design for a 2DOF frame structure with

an ideal damper and a minimally dissipativity control design for a 2DOF model of an elevated highway

γc 0.6 0.8,( )=
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bridge with a realistic MR fluid damper model. In the first example, the dissipativity indices were very use-

ful for understanding different characteristics of the controller, and the proposed LMI approach was able to

considerably improve drift performance of the controller. In the second example, although the LMI method

was able to improve the dissipative nature of the primary controller, this improvement was not reflected in

the final semiactive performance efficiently since the use of a realistic damper model with a nondissipative

primary controller lowers the original dissipativity. In summary, the dissipativity indices are useful for

understanding the performance of a semiactive system with a smart damper, and the proposed LMI method

proposed is able to modify the dissipativity levels of the controller even though a weak form of the dissipa-

tivity constraint is employed.
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APPENDIX I. RELEVANT LITERATURE

In this section, a literature survey relevant to the concepts presented in this paper are given.

Dissipativity and Dissipative Systems

There are several definitions of dissipativity in the field of systems and control. In fact, dissipativity is

one of the key concepts in control theory, and there is a vast body of literature regarding dissipative sys-

tems. However, one should note that these definitions are used to characterize input–output relations of

dynamic systems and that these are different from the mechanical definition used herein. Rather, dissipa-

tivity is associated with the control force, and the concept of dissipative force is introduced based on

mechanical energy dissipation of energy in this study. Although a connection between these two interpreta-

tions can be found, this is beyond the scope of this paper. Interested readers are directed to the works by

Gurtin and Herrera (1964), Willems (1972a,b), Taylor (1974), Ioannou and Tao (1987) and Wen (1988) for

further details.
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Convex Multiobjective Optimization via LMIs

Convex optimization techniques became very popular in the control field since it has been shown that

important control problems, such as robust H2 and H∞ control problems, can be represented in terms of

LMIs. These techniques allow numerical solution of complex problems with multiobjective goals that have

no analytical solution. In fact, the LQR problem defined herein can be represented as an H2 problem, and

available an LMI representation of an H2 problem can be used. However, robust H2 control theory is quite

involved and requires a good knowledge of frequency and time domain analysis. In contrast, LQR is well

known and widely applied within the structural control community; therefore, LQR is used herein. Inter-

ested readers are directed to the works by Willems (1971), Khargonekar and Rotea (1991), Feron et al.

(1992), Peres et al. (1992), Boyd et al. (1994), Safonov et al. (1994), Scherer et al. (1997), Turan et al.

(1997), Masubuchi et al. (1998), and Dullerud and Paganini (2000) for further details. Application of LMI

techniques to structural control problems is very recent. Some examples are Yang et al. (2003) and Yang et

al. (2004).

APPENDIX II. DEFINITIONS AND THEOREMS

In this section, some essential definitions and theorems are given.

Definition A.1  A function  is a linear function of  if  for all sca-

lar  and .

Definition A.2  A function  is an affine function of  if it can be written as  where

 is a linear function and  is a constant.

According to the definitions given above, all linear functions are affine but not all affine functions are

linear. For example, the function  given in (10) is an affine function of , not linear. Some authors

(e.g., Dullerud and Paganini 2000) prefer to use the following for the definition of an LMI:

. (A.1)

where  is a linear function of .

Definition A.3  A set  is convex if  for any  and any .

Theorem A.1  (Schur complement formula) The set of matrix inequalities 

f x( ) x f αx1 βx2+( ) αf x1( ) βf x2( )+=

α β

g x( ) x g x( ) f x( ) a+=

f x( ) a

F x( ) x

F x( ) x1F1 … xnFn+ + F0–>=

F x( ) x

C ℜn⊂ μx1 1 μ–( )x2+ C∈ x1 x2, C∈ μ 0 1,[ ]∈
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    and    (A.2)

is equivalent to

   and   (A.3)

where ,  and  are matrices, and  and  are symmetric. See Dullerud and Paganini (2000) for a

proof.

Definition A.4  The inequality  is a nonstrict LMI while  is a strict LMI.

From an engineering and computational point of view, a strict LMI is not different from its nonstrict

version. For example, the dissipativity constraint is herein represented as a strict LMI in numerical compu-

tations for consistency. However, there are also situations where the computations are quite sensitive to the

inequality condition. For example, during numerical simulations, it is observed that, for some specific val-

ues of the weighting matrices, the corresponding LQR problem turns out to be ill-conditioned even though

the conditions for the well-posedness given by (17) are satisfied. It is found that some of the eigenvalues of

 are very close to zero (in the range of ) for these weighting matrices. Therefore, it is highly rec-

ommended that the LQR weighting matrices be selected such that the smallest eigenvalue of  is large

enough to guarantee the well-posedness of the LQR.

Next, the equivalency of the problems given by (19) and (20) is proven. For this purpose, some useful

corollaries are given first. In corollaries (A.2) to (A.6), it is assumed that ,  and 

is Hurwitz. Also, the following shorthand notations are used:  and

 where .

Corollary A.2   ⇔ .

Proof:   ⇔  ⇔  ⇔   ⇔ .

Corollary A.3   and   ⇒ . This is a consequence of corollary A.2.

Corollary A.4   ⇒ .

Proof:  Let  be the  row of . Then,  ⇔   ⇒ .

Corollary A.5   ⇒ .

R 0> Q SR 1– ST– 0>

Q S
ST R

0> R 0>

Q R S Q R

F x( ) 0≥ F x( ) 0>

W 10 10–

W

S ST= 0> P PT= 0> A

LS AS SAT Ψ+ +≡

LP AP PAT Ψ+ +≡ Ψ ΨT 0>=

S P> LS LP<

S P> S P– 0> A S P–( ) S P–( )AT+ 0< AS SAT+ AP PAT+< LS LP<

LS 0< LP 0= S P>

Φ ΦT 0>= Tr CΦCT( ) 0>

ci ith C Φ 0> ciΦci
T 0> i∀ ciΦci

T

i
∑ Tr CΦCT( ) 0>=

S P> Tr CSCT( ) Tr CPCT( )>
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Proof:   ⇔  ⇒  ⇔  ⇔

 ⇔ .

Corollary A.6  Let , Then, there exists a unique matrix  such that 

and  for any . Moreover,  holds for any . 

Proof:  See corollaries A.3 and A.5.

Lemma A.7  Let 

      and      . (A.4)

Then,  and . The proof is readily obtained using corollary A.6.

Theorem A.8  The problems given by (19) and (20) are equivalent.

Proof:  It can be shown with some matrix algebra that the objective function in the LQR problem can be

written as

 (A.5)

where

(A.6)

for real symmetric matrices  and . Note that there is not necessarily a unique  for a given  in

(A.5). The gain in problem (19) can be found as

(A.7)

where

    and    . (A.8)

Similarly, the gain in problem (20) can be written as

(A.9)

S P> S P– 0> Tr C S P–( )CT[ ] 0> Tr CSCT CPCT–( ) 0>

Tr CSCT( ) Tr CPCT( )– 0> Tr CSCT( ) Tr CPCT( )>

S S LS 0<{ }= P0 P0 P LP 0=[ ]=

P0 S< S S∈ Tr CP0CT( ) Tr CSCT( )< S S∈

S0      Tr CSCT( )
S

minarg

subject to   LS 0≤

= P0 P LP 0=[ ]=

S0 P0= Tr CS0CT( ) Tr CP0CT( )=

Tr Q1 2⁄ PQ1 2⁄( ) Tr R1 2⁄ KPKTR1 2⁄( ) Tr KPN( )– Tr NTPKT( )–+ Tr Cz
˜

K( )PCz
˜
T K( )[ ]=

Cz
˜

K( ) Q1 2/ ϒK–
ϒT R1 2/ K–

=

Q1 2/ R1 2/ ϒ N

K0    Tr Cz
˜

K( )P0 K( )Cz
˜

K( )[ ]
K

minarg=

P0 K( ) P  Ac K( )P PAc
T K( ) EET+ + 0=[ ]= Ac K( ) A BK–=

F0    Tr Cz
˜

F( )S0 F( )Cz
˜

F( )[ ]
F

minarg=
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where

    and    . (A.10)

Using Lemma A.7, one can show that the matrix functions given by equations (A.8) and (A.10) are equal.

Therefore,  and . Note that a strict inequality is used in (20) while (A.10) is a

semidefinite problem. As discussed before, from a numerical point of view, the strict and nonstrict versions

of the inequalities do not make a difference in the solutions.

The main difference between the problems (19) and (20) — i.e., the inequality condition — allows one

to add additional constraints to the LQR problem. It is clear that the addition of a new constraint will result

in . Therefore, the solution of (20) with additional inequality constraints is expected to give larger

outputs (though possibly a more robust controller) than a standard LQR. This concept can also be used to

explain the difference between active and semiactive control. Let  and  be the Lyapunov matrices

obtained from the LQR problem with the dissipativity constraint and without it. For  to be equal to ,

the Lyapunov dissipativity must be equal to the mean closed-loop dissipativity, which is practically impos-

sible if higher mean dissipativity is desired. A high dissipativity will result in , i.e., increased out-

puts and robustness.
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